首页> 外文OA文献 >Engineering a Horseradish Peroxidase C Stable to Radical Attacks by Mutating Multiple Radical Coupling Sites
【2h】

Engineering a Horseradish Peroxidase C Stable to Radical Attacks by Mutating Multiple Radical Coupling Sites

机译:通过突变多个自由基偶联位点来工程改造对自由基稳定的辣根过氧化物酶C

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack.
机译:过氧化物酶作为工业生物催化剂具有巨大的潜力。特别地,由于该方法相对于其他常规化学方法的优点,已经广泛地研究了由过氧化物酶催化的酚类化合物的氧化聚合。但是,过氧化物酶的工业应用常常受到限制,因为它们在氧化聚合过程中被苯氧基自由基迅速失活。在这项工作中,我们报告了一种新型的蛋白质工程方法,以改善辣根过氧化物酶同工酶C(HRPC)的自由基稳定性。使用质谱分析鉴定了易被苯氧基自由基修饰的苯丙氨酸残基。 UV-Vis和CD光谱表明自由基偶联并没有改变HRPC的二级结构或活性位点。将四个苯丙氨酸(Phe)残基(F68,F142,F143和F179)各自突变为丙氨酸残基,以生成单个突变体,以检查这些位点在自由基偶联中的作用。尽管自由基稳定性略有改善,但每个单个突变体仍表现出快速的自由基失活。为了通过自由基偶联进一步减少失活,在F68A / F142A / F143A / F179A中组合了四个取代突变。与完全灭活的野生型相比,该突变体通过保留其初始活性的41%表现出极大的自由基稳定性增强。结构和序列比对表明,HPRC的易受自由基破坏的Phe残基在同源过氧化物酶中是保守的,其表现出与HRPC相同的快速失活趋势。基于我们的定点诱变和生化特征,我们表明工程化易受自由基破坏的残基消除多重自由基偶联可能是提高过氧化物酶抵抗自由基攻击稳定性的好策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号